
Python Concurrency

Threading, parallel and GIL
adventures

Chris McCafferty, SunGard Global Services

Overview

• The free lunch is over – Herb Sutter

• Concurrency – traditionally challenging

• Threading

• The Global Interpreter Lock (GIL)

• Multiprocessing

• Parallel Processing

• Wrap-up – the Pythonic Way

Reminder - The Free Lunch Is Over

How do we get our free lunch back?

• Herb Sutter’s paper at:
• http://www.gotw.ca/publications/concurrency-ddj.htm

• Clock speed increase is stalled but number of
cores is increasing

• Parallel paths of execution will reduce time to
perform computationally intensive tasks

• But multi-threaded development has typically
been difficult and fraught with danger

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Threading

• Use the threading module, not thread

• Offers usual helpers for making concurrency a bit less
risky: Threads, Locks, Semaphores…

• Use logging, not print()

• Don’t start a thread in module import (bad)

• Careful importing from daemon threads

Traditional management view of Threads

Baby pile of snakes, Justin Guyer

Managing Locks with ‘with’

• With keyword is your friend

• (compare with the ‘with file’ idiom)
import threading

rlock = threading.RLock()

with rlock:

 print "code that can only be executed

while we acquire rlock"

 #lock is released at end of code block,

regardless of exceptions

Atomic Operations in Python

• Some operations can be pre-empted by
another thread

• This can lead to bad data or deadlocks

• Some languages offer constructs to help

• CPython has a set of atomic operations due to
the operation of something called the GIL and
the way the underlying C code is implemented

• This is a fortuitous implementation detail –
ideally use RLocks to future-proof your code

CPython Atomic Operations

• reading or replacing a single instance attribute

• reading or replacing a single global variable

• fetching an item from a list

• modifying a list in place (e.g. adding an item
using append)

• fetching an item from a dictionary

• modifying a dictionary in place (e.g. adding an
item, or calling the clear method)

Example Processing Task

• Maclaurin was an 18th Century Scottish
mathematician

• Typical Maclaurin series:
1

1 − 𝑥
= 1 + 𝑥 + 𝑥2 + 𝑥3 +⋯ , 𝑥 < 1

• This is easily decomposable: split the series up
and then just add the results together in any
order

• Easy to check the answer, great for testing
threads

http://en.wikipedia.org/wiki/Colin_Maclaurin

Threading Example

• See ThreadMaclaurin.py, compare with single-
threaded SimpleMaclaurin.py

• Simple single-threaded example takes 4.522s

1 thread 4.623 secs for 12800000 iterations
2 threads 6.195 secs for 12800000 iterations
4 threads 6.047 secs for 12800000 iterations
6 threads 6.357 secs for 12800000 iterations
8 threads 6.006 secs for 12800000 iterations

The time taken goes up not down with more than one
thread?!?

http://christophermccafferty.com/code/ThreadMaclaurin.py
http://christophermccafferty.com/code/SimpleMaclaurin.py

The Global Interpreter Lock (GIL)

• Python is an interpreted language

• Only one thread can run in the interpreter at
once

• Constant locking and signaling to see which
thread gets the GIL next

• Detailed effect of this depends on your
operating system

• Heavily affects CPU-bound problems

GIL – not a showstopper

• This is a known problem – brilliant minds are
currently working on solutions

• Affects Ruby too and any sensible interpreted
language

• Not noticeable on I/O-bound applications

• Lots of other solutions: Jython,
multiprocessing, Stackless Python…

• Think in a Pythonic Way.

Threading with Jython

• Jython has many of the CPython modules

• Bytecode compiled, not fully interpreted, runs
on the Java Virtual Machine
1 thread 5.855 secs for 12800000 iterations

2 threads 2.836 secs for 12800000 iterations

4 threads 1.581 secs for 12800000 iterations

6 threads 1.323 secs for 12800000 iterations

8 threads 1.139 secs for 12800000 iterations

• That’s more like it

Multiprocessing – no more GIL

Snakes on a Plain, by Linda Frost

Multiprocessing

• Jython doesn’t have the multiprocessing module

• Each Python process has its own interpreter and
GIL

• multiprocessing module makes managing
processes and interprocess communication easy

• Use modules like pickle for passing payloads
around

• Less worrying about shared memory and
concurrency

Multiprocessing Example

• See MultiprocessMaclaurin.py for a simple
example.

• Note use of a Queue to get the results back
1 thread 4.561 secs for 12800000 iterations

2 threads 2.339 secs

4 threads 1.464 secs

6 threads 1.201 secs

8 threads 1.120 secs

http://christophermccafferty.com/code/MultiprocessMaclaurin.py

Multiprocessing - continued

• Remember there is an overhead associated
with processes – don’t fork off thousands

• Full access to Cpython modules

• Be careful spawning processes from a script!
• Child process needs to be able to import the script or

module containing the target function

• Can lead to recursive behaviour

• This can lead to processes being spawned until the
machine crashes

Avoid multiprocessing recursion

• The ways to avoid recursive behaviour are:

• Have the target method in another
module/script

• Protect the executed code with a test for
__main__:
if __name__ == '__main__':

 p = multiprocessing.Process(target=worker, args=(i,))

p.start()

• Use a properly object-oriented structure in
your code

Parallel Python

• Parallel Python module pp supports breaking
up into tasks

• Detects number CPUs to decide process pool
size for tasks

• No GIL effect

• Easily spread the load onto another machine
running a pp process

Parallel Python Example

• In ParallelMaclaurin.py we stop caring about
the number of processes or threads

• We operate at a higher level of abstraction

• Example breaks the problem into 64 tasks

• Running on an 8 core desktop:

• Time taken 1.050 secs for 12800000 iterations

http://christophermccafferty.com/code/ParallelMaclaurin.py

Parallel Python for Big Data

• Job management and stats

• Symmetric or asymmetric computing

• Worry about decomposing and parallelising
the task, not writing Locks and Semaphores

• Getting our free lunch back

Conclusions

• Python will support sensible threading constructs
like any decent language

• Watch out for the GIL for CPU-bound tasks
• Switching to multiprocessing is easy
• Modules like pp support parallel processing and grid

computing
• Lots of other options for I/O-bound problems:

Stackless Python, Twisted…
• Many modules use threads sensibly behind the scenes
• Ideally, think Pythonicly – only move down the

abstraction chain when you need to

Links

• Blog entry on much of this material
• http://www.christophermccafferty.com/blog/2012/02/threa

ding-in-python/

• David Beazley’s talks:
• http://blip.tv/rupy-strongly-dynamic-conference/david-

beazly-in-search-of-the-perfect-global-interpreter-lock-
5727606

• http://www.slideshare.net/dabeaz/in-search-of-the-perfect-
global-interpreter-lock

• http://blip.tv/carlfk/asynchronous-vs-threaded-python-
2243317

• Herb Sutter’s The Free Lunch Is Over:
• http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Thank you

• Chris McCafferty
• http://christophermccafferty.com/blog

• Slides will be at:
• http://christophermccafferty.com/slides

• Contact me at:
• public@christophermccafferty.com

http://christophermccafferty.com/blog
http://christophermccafferty.com/slides
mailto:public@christophermccafferty.com

