Python Concurrency

Threading, parallel and GIL
adventures
Chris McCafferty, SunGard Global Services

Overview

The free lunch is over — Herb Sutter
Concurrency — traditionally challenging
Threading

The Global Interpreter Lock (GIL)
Multiprocessing

Parallel Processing

Wrap-up — the Pythonic Way

Reminder - The Free Lunch Is Over

10,000,000
Dual-Core Itanium 2 & /
1,000,000 : =
Intel CPU "l’rends A
(sources: Intel, Wikipedia, K. Olukotun) "
100,000

10,000

1,000

100

m Transistors (000) |
@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)

\

0]
1970 1975 1980 1985 1990 1995 2000 2005 2010

How do we get our free lunch back?

Herb Sutter’s paper at:

* http://www.gotw.ca/publications/concurrency-ddj.htm

Clock speed increase is stalled but number of
cores Is increasing

Parallel paths of execution will reduce time to
perform computationally intensive tasks

But multi-threaded development has typically
been difficult and fraught with danger

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Threading

Use the threading module, not thread

Offers usual helpers for making concurrency a bit less
risky: Threads, Locks, Semaphores..

Use 1logging, hotprint ()
Don’t start a thread in module import (bad)
Careful importing from daemon threads

Traditional management view of Threads

Baby pile of snakes, Justin Guyer

Managing Locks with ‘with’

e With keyword is your friend

e (compare with the ‘with file’ idiom)
import threading

rlock = threading.RLock ()

wilth rlock:

print "code that can only be executed
while we acquire rlock™"

#lock is released at end of code block,
regardless of exceptions

Atomic Operations in Python

Some operations can be pre-empted by
another thread

This can lead to bad data or deadlocks
Some languages offer constructs to help

CPython has a set of atomic operations due to
the operation of something called the GIL and
the way the underlying C code is implemented

This is a fortuitous implementation detail —
ideally use RLocks to future-proof your code

CPython Atomic Operations

reading or replacing a single instance attribute
reading or replacing a single global variable
fetching an item from a list

modifying a list in place (e.g. adding an item
using append)

fetching an item from a dictionary

modifying a dictionary in place (e.g. adding an
item, or calling the clear method)

Example Processing Task

Maclaurin was an 18t Century Scottish
mathematician

Typical Maclaurin series:
1

1—x
This is easily decomposable: split the series up
and then just add the results together in any
order

Easy to check the answer, great for testing
threads

=14+x+x?>+x3+--, x| < 1

http://en.wikipedia.org/wiki/Colin_Maclaurin

Threading Example

* See ThreadMaclaurin.py, compare with single-
threaded SimpleMaclaurin.py

* Simple single-threaded example takes 4.522s

1 thread 4.623 secs for 12800000 iterations
2 threads 6.195 secs for 12800000 iterations
4 threads 6.047 secs for 12800000 iterations
6 threads 6.357 secs for 12800000 iterations
8 threads 6.006 secs for 12800000 iterations

The time taken goes up not down with more than one
thread?!?

http://christophermccafferty.com/code/ThreadMaclaurin.py
http://christophermccafferty.com/code/SimpleMaclaurin.py

The Global Interpreter Lock (GIL)

Python is an interpreted language

Only one thread can run in the interpreter at
once

Constant locking and signaling to see which
thread gets the GIL next

Detailed effect of this depends on your
operating system

Heavily affects CPU-bound problems

GIL — not a showstopper

This is a known problem — brilliant minds are
currently working on solutions

Affects Ruby too and any sensible interpreted
language

Not noticeable on I/O-bound applications

Lots of other solutions: Jython,
multiprocessing, Stackless Python...

Think in a Pythonic Way.

Threading with Jython

e Jython has many of the CPython modules

* Bytecode compiled, not fully interpreted, runs

on the Java Virtual Machine

1thread 5.855 secs for 12800000 iterations
2 threads 2.836 secs for 12800000 iterations
4 threads 1.581 secs for 12800000 iterations
6 threads 1.323 secs for 12800000 iterations
8 threads 1.139 secs for 12800000 iterations

e That’s more like it

no more GIL

iprocessing

Mult

Snakes on a Plain, by Linda Frost

Multiprocessing

Jython doesn’t have the multiprocessing module

Each Python process has its own interpreter and
GIL

multiprocessing module makes managing
processes and interprocess communication easy

Use modules like pickle for passing payloads
around

Less worrying about shared memory and
concurrency

Multiprocessing Example

* See MultiprocessMaclaurin.py for a simple
example.

* Note use of a Queue to get the results back

1thread 4.561 secs for 12800000 iterations
2 threads 2.339 secs
4 threads 1.464 secs
6 threads 1.201 secs
8 threads 1.120 secs

http://christophermccafferty.com/code/MultiprocessMaclaurin.py

Multiprocessing - continued

e Remember there is an overhead associated
with processes — don’t fork off thousands

* Full access to Cpython modules
e Be careful spawning processes from a script!

e Child process needs to be able to import the script or
module containing the target function

 Can lead to recursive behaviour

* This can lead to processes being spawned until the
machine crashes

Avoid multiprocessing recursion

The ways to avoid recursive behaviour are:

Have the target method in another
module/script

Protect the executed code with a test for
main

if name == main

p = multiprocessing.Process (target=worker, args=(i,))
p.start ()

Use a properly object-oriented structure in
your code

Parallel Python

Parallel Python module pp supports breaking
up into tasks

Detects number CPUs to decide process pool
size for tasks

No GIL effect

Easily spread the load onto another machine
running a pp process

Parallel Python Example

In ParallelMaclaurin.py we stop caring about
the number of processes or threads

We operate at a higher level of abstraction
Example breaks the problem into 64 tasks

Running on an 8 core desktop:
 Time taken 1.050 secs for 12800000 iterations

http://christophermccafferty.com/code/ParallelMaclaurin.py

Parallel Python for Big Data

Job management and stats
Symmetric or asymmetric computing

Worry about decomposing and parallelising
the task, not writing Locks and Semaphores

Getting our free lunch back

Conclusions

Python will support sensible threading constructs
like any decent language

Watch out for the GIL for CPU-bound tasks
Switchingtomultiprocessing is easy

Modules like pp support parallel processing and grid
computing

Lots of other options for I/O-bound problems:
Stackless Python, Twisted...

Many modules use threads sensibly behind the scenes

Ideally, think Pythonicly — only move down the
abstraction chain when you need to

Links

* Blog entry on much of this material
e http://www.christophermccafferty.com/blog/2012/02/threa
ding-in-python/
* David Beazley’s talks:

e http://blip.tv/rupy-strongly-dynamic-conference/david-
beazly-in-search-of-the-perfect-global-interpreter-lock-
5727606

e http://www.slideshare.net/dabeaz/in-search-of-the-perfect-
global-interpreter-lock

e http://blip.tv/carlfk/asynchronous-vs-threaded-python-
2243317

e Herb Sutter’s The Free Lunch Is Over:
* http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://www.christophermccafferty.com/blog/2012/02/threading-in-python/
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://blip.tv/rupy-strongly-dynamic-conference/david-beazly-in-search-of-the-perfect-global-interpreter-lock-5727606
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://www.slideshare.net/dabeaz/in-search-of-the-perfect-global-interpreter-lock
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://blip.tv/carlfk/asynchronous-vs-threaded-python-2243317
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Thank you

* Chris McCafferty
e http://christophermccafferty.com/blog

e Slides will be at:
* http://christophermccafferty.com/slides

e Contact me at:

* public@christophermccafferty.com

http://christophermccafferty.com/blog
http://christophermccafferty.com/slides
mailto:public@christophermccafferty.com

